请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析、偏微分方程与动力系统讨论班(2025秋季第3讲)】Logvinenko-Sereda sets and Carleson measures on compact manifolds

发布日期:2025-09-15    点击:

北航学术报告

--- 分析、偏微分方程与动力系统讨论班(2025秋季第3)


Logvinenko-Sereda sets and Carleson measures on compact manifolds

王兴(湖南大学)

时间202509月17(周三)上午9:00-10:00

地点:学院路老主楼105

摘要: Marzo and Ortega-Cerd`a gave geometric characterizations for L^p-Logvinenko-Sereda sets on the standard sphere. Later, Ortega-Cerd`a and Pridhnani further investigated L^2-Logvinenko-Sereda sets and L^2-Carleson measures on compact manifolds without boundary. In this paper, we  characterize L^p-Logvinenko-Sereda sets and L^p-Carleson measures on compact manifolds with or without boundary for all 1<p<\infty.   Furthermore, we investigate Logvinenko-Sereda sets and Carleson measures for eigenfunctions on compact manifolds without boundary, and we completely characterize them on the standard sphere for p > \frac{2m}{m-1}. For the range p < \frac{2m}{m-1}, we conjecture that L^p-Logvinenko-Sereda sets on the standard sphere are characterized by the tubular geometric control condition and we provide some evidence. These results provide new progress on an open problem raised  by Ortega-Cerd`a and Pridhnani.  

报告人简介: 王兴,湖南大学数学学院副教授。美国约翰霍普金斯大学博士学位,师从Christopher Sogge 教授.主要研究方向是流形上的调和分析及算子谱的渐近性质,Advances in Mathematics, Transactions of the American Mathematical Society, Canadian Journal of Mathematics, Proceedings of the American Mathematical Society,Mathematical Research Letters 等学术期刊上发表多篇学术论文。

欢迎大家参加!


快速链接

版权所有 © 2025  williamhill官网_williamhill中国官方网站 williamhill888.com
地址:北京市昌平区高教园南三街9号   电话:61716719

Baidu
sogou